[Skip to main content]


Back to news list

Professor David Thouless awarded Nobel Prize in Physics

4 October 2016

Professor David Thouless awarded Nobel Prize in Physics


Professor David Thouless (1952) has been awarded the 2016 Noble Prize in Physics, along with fellow Cambridge alumni Duncan Haldane (Christ’s) and Michael Kosterlitz (Gonville and Caius). Professor Thouless is Trinity Hall’s first Nobel Laureate and Cambridge’s 93rd.

Professor Thouless' family has told us he was "moved and honored to learn of the Nobel Prize, and he was very happy to hear that he would share it with Mike Kosterlitz and Duncan Haldane. He is grateful to all his friends and colleagues around the world who have sent congratulations and made such lovely comments about his contributions to physics."

The Prize has been awarded for theoretical discoveries of topological phase transitions and topological phases of matter.

The Nobel Assembly announced the winners this morning (4 October), saying: “This year’s Laureates opened the door on an unknown world where matter can assume strange states. They have used advanced mathematical methods to study unusual phases, or states, of matter, such as superconductors, superfluids or thin magnetic films. Thanks to their pioneering work, the hunt is now on for new and exotic phases of matter. Many people are hopeful of future applications in both materials science and electronics.

“The three Laureates’ use of topological concepts in physics was decisive for their discoveries. Topology is a branch of mathematics that describes properties that only change step-wise. Using topology as a tool, they were able to astound the experts. In the early 1970s, Michael Kosterlitz and David Thouless overturned the then current theory that superconductivity or suprafluidity could not occur in thin layers. They demonstrated that superconductivity could occur at low temperatures and also explained the mechanism, phase transition, that makes superconductivity disappear at higher temperatures.

“In the 1980s, Thouless was able to explain a previous experiment with very thin electrically conducting layers in which conductance was precisely measured as integer steps. He showed that these integers were topological in their nature. At around the same time, Duncan Haldane discovered how topological concepts can be used to understand the properties of chains of small magnets found in some materials.

“We now know of many topological phases, not only in thin layers and threads, but also in ordinary three-dimensional materials. Over the last decade, this area has boosted frontline research in condensed matter physics, not least because of the hope that topological materials could be used in new generations of electronics and superconductors, or in future quantum computers. Current research is revealing the secrets of matter in the exotic worlds discovered by this year’s Nobel Laureates.”

Professor Thouless studied for his undergraduate degree in physics at Trinity Hall from 1952 and became an Honorary Fellow in 2014.

Back to news list


Trinity Hall
Trinity Lane

t: +44 1223 332500
e: info@trinhall.cam.ac.uk

Research Articles

Will one be forgotten?

Internet Freedom and Data Protection After Google Spain by Dr David Erdos

The Old Library Blog

Front Court Magazine

Image of the cover of the latest issue of Front Court

Issue 26
Autumn 2017

in this issue:

  • Behind the lens: THwomen40 photographic portraits
  • A new Hall portrait
  • Brexit and UK trade

View the page-turn issue

Gift Shop

Mugs, pens and more

Buy Trinity Hall gifts

Take Trinity Hall with you wherever you go, from China mugs to pens and notecards.

Shop now!

[Go back to the top of the page]